Problem P02-1. Print this template and write your solution in the spaces indicated. This is the paper you'll fax to the instructor.

A car is traveling on a straight, level road at a constant speed of $20.0 \mathrm{~m} / \mathrm{s}$. Just as the car reaches a hill, the engine dies. The car coasts up the hill, losing speed at a constant rate of $8.0 \mathrm{~m} / \mathrm{s}^{2}$. The distance from the bottom of the hill to the top (along the road) is 30.0 m . Show that the car will not reach the top of the hill before coming to a stop and rolling back down.

Strategy: Calculate the distance that the car would have to travel along the hill before coming to a stop, assuming that sufficient distance were available.

Don't write in this column.	Do your work in this column.
Step 1. After reading the problem, draw a diagram in the cell to the right. On the diagram, indicate the origin and the direction you select for +x. Label any other relevant quantities.	
Step 2. List all the given information. Identify the givens with the same symbols that are used in the dvat equations, namely, x, x_{0}, v, v_{o}, a, and t. If values are known or defined to be 0, say so. Given the direction you selected for +x, make sure all the given information has the correct signs.	

| Step 5. Algebraically solve the dvat
 equation you selected for the
 unknown. That means to solve in
 symbolic form without numbers. |
| :--- | :--- |

